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Joint posterior density

The joint posterior density of all unknowns under DFMH can be written as follows:
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and p(p)and p(a§) can be arbitrarily specified to be informative or diffuse priors

with different functional distributional forms.

For UNIMH and BIVMH, the joint posterior density is further marginalized
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i.e., a mixture of a scaled Student t distribution with probability = and a point mass at zero of

probability (1-7).
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Description of the three sampling strategies

Sampling strategy for DFMH

Sampling the degrees of freedom parameter for the random SNP effects: We used a proper
prior p(v) oc(v+1)’2 which corresponds to a Uniform(0,1) prior on (v +l)_1. The full conditional

density (FCD) for v can be written as follows:

p(v|ELSE) (HI(O‘ >o) (0§j|v,sz)jp(v)

where 1(.) is the indicator variable such that if the condition inside (.) is true, 1(.) = 1, otherwise
I(.) = 0. As this FCD is not recognizable, we propose a random walk normal Metropolis Hastings
(MH) step on &=log(v). Noting that the Jacobian from v to & is exp(¢), the corresponding FCD

for & is as follows:
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where m, = i | (ajj > 0) . Hence
j=1
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Suppose the value of & in the current cycle i is £, the random walk proposal for £ in the

next MCMC cycle is drawn from a Gaussian distribution:

—(&x-gmy
P(e™)= \/_Cep 2¢?

This is equivalent to generating a random variable, say & from N(0, ¢) and adding it to £ to

p(&*| ELSE)

ropose & = &M+ 5. The MH acceptance ratio is determinedtobe g = —2——— /|

numerical stability, we evaluated this ratio as:
_ * _ [i]
o =exp(log p(&*| ELSE) ~log (& | ELSE))

To implement this MH sampling strategy, we generate u from a Uniform(0,1) distribution. If

a>1,accept &M =£* If u <o thenset &M = E*, Otherwise if u > a, then set £ = £,

The following tuning procedure adapted from Muller [1] is to determine ¢ :

1) For every 10 cycles, if the rate of acceptance is greater than 80%, increase ¢’ by a factor of

1.2.
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2) For every 10 cycles if the rate of acceptance is less than 20%, decrease ¢> by a factor of 0.7.

3) After burn-in, keep ¢ constant and monitor subsequent acceptance rates to ensure that they

fall within 25 to 75%.

Sampling the scale parameter for the random SNP effects: Borrowing results from Yi and Xu

[2], the FCD for s based on the specification of a conjugate prior p(s2 |as,,65) = Gamma

(e, ;) can be written as follows:
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i.e., a Gamma distribution with parameters «, + —— and EJZ:;‘I (agj > O) oy + 5.
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Sampling strategy for UNIMH

Sampling the degrees of freedom parameter for the random SNP effects: The “collapsed”
FCD for sampling v (after integrating out {agz_ }mlfrom the FCD for v as specified in DFMH
] j:

above) is as follows:
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As this FCD is not recognizable, we specify a random walk MH step on &=1log(v). Note that the

Jacobian from v to & is exp(¢). The corresponding FCD for & is as follows:
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where m, = il (g, #0). Hence

i=t
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log p(& | ELSE)

=m (]()g F(Mj — |Og F(Mj + 1 |og (%j} +
2 2 2 exp(&)s

2

il (g, O)[—(%jlog(l+ ﬁ)}zlogm exp(&)) + &

=t

Suppose the value of & in the current cycle i is £, We propose a random walk sample for
£ in the next cycle using a Gaussian proposal distribution:

* _ £li1)?
1 —(&x-&)

exp

p(f*) = \/ECV 205

That is equivalent to generating a random variable, say 5 from N(0, ¢?) and adding it to &M to

p(&*| ELSE)

— oy e evaluated
p(£"|ELSE)

propose & = £ 4 5. To determine the MH acceptance ratio o =

this ratio in a numerically stable manner as:

o= exp(log p(&*| ELSE)—log p( & ELSE))

To implement this MH sampling strategy, we first generated u from a Uniform(0,1) distribution.

If & >1 oru < athenset & = &*otherwise set £ = £* | The same tuning procedure from

Muller [1] as described in DFMH for ¢ was used here.

Sampling the scale parameter for the random SNP effects: The FCD for sampling s? is as

follows:
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Even though this FCD is recognizable, we propose a random walk MH step on y =log(s*) . Note

that the Jacobian from s* to v is exp(y). The corresponding FCD for y is as follows:
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where m, = i (9;#0). Hence
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Suppose the value of i in the current cycle i is ! . We propose a random walk value for

w1 in the next cycle from a Gaussian distribution:
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That is equivalent to generate a random variable, say & from N(0,c?) and adding it to ! to

p(w*| ELSE)

ropose " =w!! + & . To determine the acceptance ratio ¢ = ——————~

in a numerically

stable manner, we evaluated this ratio as:

o= exp(log p(w*| ELSE)—log p(v!" | ELSE))

To implement this MH sampling strategy, we first generated u from a Uniform(0,1) distribution.

[i+1] _

If «>1 oru<a,set y!"™ =y>*. Otherwise, if u>a thenset y w™ . The same tuning

procedure from Muller [1] described previously is used to tune c’:
Sampling strategy for BIVMH
Sampling the degrees of freedom and scale parameters for the random SNP effects:

We divided burn-in into four stages with equal length:

Stage 1: Sample log(v) and log(s?) using UNIMH (see sampling strategy 2) with fine-tuning
procedure on ¢Z and ¢’ , which are also the variances for the two separate Gaussian proposal

densities;
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Stage 2: Sample log(v) and log(s®) using UNIMH with fixing ¢ and c’to the values tuned
from the last cycle in stage 1 and compute correlation r between samples of log(v) and log(s?)

within stage 2;

Stage 3: Jointly sample log(v) and log(s?) using a bivariate Gaussian proposal density with

variances ¢ and ¢ based on those tuned at the end of Stage 1 and a covariance based on the
correlation computed from Stage 2. The joint FCD for v and s* (based on a “collapsed

specification that integrates out {agzj }m from the FCD) is as follows:
j=1
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As this density is not recognizable, we could use a random walk normal MH step on & =log(v)

and y =log(s?). Note that the Jacobian from v to & is exp(£) whereas the Jacobian from s? to
74

w 1S exp(w) . The corresponding FCD for £ and w is as follows:
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Where m, = il (9;#0), hence

=

log p(&,w | ELSE)
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Suppose the value of n=[&,y]  in the current cycle i is n™. We propose a random walk for

N in the next cycle from a bivariate Gaussian distribution:

*\ 1 * i7\ -1 * i
p(n )—Wem((" ") (c;2) " (n _‘1”)]

That is equivalent to generate a random variable, say 8§ from N(O, cf]E ) and add it to n'"! to

oropose 0" =0 + 5, where = ={ ] , ¢ and ¢? were determined after tuning at

the end of Stage 1 and the correlation r between samples of log(v) and log(s®) is based on

samples drawn during Stage 2.

p(n*| ELSE)

— o ooy e evaluated this ratio in a numerically
p(n" | ELSE)

To determine the acceptance ratio o =

stable manner as:

o =exp(log p(n*| ELSE) —log p(n'" | ELSE ))
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To implement this Metropolis sampling strategy, we first generated u from a Uniform(0,1)

[i+1]

distribution. If & >1 or u < a then set n"*! = n*. Otherwise, if u > a, then set /" =, The

Muller [1] tuning procedure was adapted as follows to determine Cﬁ.

1) For the last 10 cycles, the rate of acceptance is greater than 60%, increase cfl by a factor of

1.2.

2) For the last 10 cycles, the rate of acceptance is less than 10%, decrease C,Z] by a factor of 0.7.

3) After the burn-in, keep cf] constant and monitor subsequent acceptance rates to ensure that

they fall within 25 to 75%.

Stage 4: Jointly sample log(v) and log(s®) using a bivariate Gaussian proposal density with
fixing value of Cf1 at the end of Stage 3. After burn-in, save all samples on v and s”using MH

with the bivariate Gaussian proposal density.
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